vis4d.eval.scalabel

Scalabel evaluator.

class ScalabelDetectEvaluator(annotation_path, config=None, mask_threshold=0.0)[source]

Scalabel 2D detection evaluation class.

Initialize the evaluator.

__repr__()[source]

Concise representation of the dataset evaluator.

Return type:

str

evaluate(metric)[source]

Evaluate the dataset.

Return type:

tuple[Dict[str, Union[float, int, Tensor]], str]

process_batch(frame_ids, sample_names, sequence_names, pred_boxes, pred_classes, pred_scores, pred_masks=None)[source]

Process tracking results.

Return type:

None

property metrics: list[str]

Supported metrics.

class ScalabelEvaluator(annotation_path, config=None)[source]

Scalabel base evaluation class.

Initialize the evaluator.

evaluate(metric)[source]

Evaluate the dataset.

Return type:

tuple[Dict[str, Union[float, int, Tensor]], str]

gather(gather_func)[source]

Gather variables in case of distributed setting (if needed).

Parameters:

gather_func (Callable[[Any], Any]) – Gather function.

Return type:

None

process_batch(*args, **kwargs)[source]

Process sample and update confusion matrix.

Return type:

None

reset()[source]

Reset the evaluator.

Return type:

None

class ScalabelTrackEvaluator(annotation_path, config=None, mask_threshold=0.0)[source]

Scalabel 2D tracking evaluation class.

Initialize the evaluator.

__repr__()[source]

Concise representation of the dataset evaluator.

Return type:

str

evaluate(metric)[source]

Evaluate the dataset.

Return type:

tuple[Dict[str, Union[float, int, Tensor]], str]

process_batch(frame_ids, sample_names, sequence_names, pred_boxes, pred_classes, pred_scores, pred_track_ids, pred_masks=None)[source]

Process tracking results.

Return type:

None

property metrics: list[str]

Supported metrics.

Modules

vis4d.eval.scalabel.base

Scalabel base evaluator.

vis4d.eval.scalabel.detect

Scalabel detection evaluator.

vis4d.eval.scalabel.track

Scalabel tracking evaluator.