vis4d.model.seg.semantic_fpn¶
SemanticFPN Implementation.
Classes
|
Output mask predictions. |
|
Semantic FPN. |
- class MaskOut(masks: list[torch.Tensor])[source]¶
Output mask predictions.
Create new instance of MaskOut(masks,)
-
masks:
list
[Tensor
]¶ Alias for field number 0
-
masks:
- class SemanticFPN(num_classes, resize=True, weights=None, basemodel=None)[source]¶
Semantic FPN.
- Parameters:
num_classes (int) – Number of classes.
resize (bool) – Resize output to input size.
weights (None | str) – Pre-trained weights.
basemodel (None | BaseModel) – Base model to use. If None is passed, this will default to ResNetV1c
Init.
- forward(images, original_hw=None)[source]¶
Forward pass.
- Parameters:
images (torch.Tensor) – Input images.
original_hw (None | list[tuple[int, int]], optional) – Original image resolutions (before padding and resizing). Required for testing. Defaults to None.
- Returns:
Raw model predictions.
- Return type:
- forward_test(images, original_hw)[source]¶
Forward pass for testing.
- Parameters:
images (torch.Tensor) – Input images.
original_hw (list[tuple[int, int]], optional) – Original image resolutions (before padding and resizing). Required for testing.
- Returns:
Raw model predictions.
- Return type: