vis4d.model.track.qdtrack¶
Quasi-dense instance similarity learning model.
Classes
|
Wrap QDTrack with Faster R-CNN detector. |
|
Output of QDtrack model. |
|
Wrap QDTrack with YOLOX detector. |
|
Output of QDtrack YOLOX model. |
- class FasterRCNNQDTrack(num_classes, basemodel=None, faster_rcnn_head=None, rcnn_box_decoder=None, qdtrack_head=None, track_graph=None, weights=None)[source]¶
Wrap QDTrack with Faster R-CNN detector.
Creates an instance of the class.
- Parameters:
num_classes (int) – Number of object categories.
basemodel (BaseModel, optional) – Base model network. Defaults to None. If None, will use ResNet50.
faster_rcnn_head (FasterRCNNHead, optional) – Faster RCNN head. Defaults to None. if None, will use default FasterRCNNHead.
rcnn_box_decoder (DeltaXYWHBBoxDecoder, optional) – Decoder for RCNN bounding boxes. Defaults to None.
qdtrack_head (QDTrack, optional) – QDTrack head. Defaults to None. If None, will use default QDTrackHead.
track_graph (QDTrackGraph, optional) – Track graph. Defaults to None. If None, will use default QDTrackGraph.
weights (str, optional) – Weights to load for model.
- __call__(images, images_hw, original_hw, frame_ids, boxes2d=None, boxes2d_classes=None, boxes2d_track_ids=None, keyframes=None)[source]¶
Type definition for call implementation.
- Return type:
- class FasterRCNNQDTrackOut(detector_out: FRCNNOut, key_images_hw: list[tuple[int, int]], key_target_boxes: list[Tensor], key_embeddings: list[Tensor], ref_embeddings: list[list[Tensor]], key_track_ids: list[Tensor], ref_track_ids: list[list[Tensor]])[source]¶
Output of QDtrack model.
Create new instance of FasterRCNNQDTrackOut(detector_out, key_images_hw, key_target_boxes, key_embeddings, ref_embeddings, key_track_ids, ref_track_ids)
-
key_embeddings:
list
[Tensor
]¶ Alias for field number 3
-
key_images_hw:
list
[tuple
[int
,int
]]¶ Alias for field number 1
-
key_target_boxes:
list
[Tensor
]¶ Alias for field number 2
-
key_track_ids:
list
[Tensor
]¶ Alias for field number 5
-
ref_embeddings:
list
[list
[Tensor
]]¶ Alias for field number 4
-
ref_track_ids:
list
[list
[Tensor
]]¶ Alias for field number 6
-
key_embeddings:
- class YOLOXQDTrack(num_classes, basemodel=None, fpn=None, yolox_head=None, train_postprocessor=None, test_postprocessor=None, qdtrack_head=None, track_graph=None, weights=None)[source]¶
Wrap QDTrack with YOLOX detector.
Creates an instance of the class.
- Parameters:
num_classes (int) – Number of object categories.
basemodel (BaseModel, optional) – Base model. Defaults to None. If None, will use CSPDarknet.
fpn (FeaturePyramidProcessing, optional) – Feature Pyramid Processing. Defaults to None. If None, will use YOLOXPAFPN.
yolox_head (YOLOXHead, optional) – YOLOX head. Defaults to None. If None, will use YOLOXHead.
train_postprocessor (YOLOXPostprocess, optional) – Post processor for training. Defaults to None. If None, will use YOLOXPostprocess.
test_postprocessor (YOLOXPostprocess, optional) – Post processor for testing. Defaults to None. If None, will use YOLOXPostprocess.
qdtrack_head (QDTrack, optional) – QDTrack head. Defaults to None. If None, will use default QDTrackHead.
track_graph (QDTrackGraph, optional) – Track graph. Defaults to None. If None, will use default QDTrackGraph.
weights (str, optional) – Weights to load for model.
- __call__(images, images_hw, original_hw, frame_ids, boxes2d=None, boxes2d_classes=None, boxes2d_track_ids=None, keyframes=None)[source]¶
Type definition for call implementation.
- Return type:
- class YOLOXQDTrackOut(detector_out: YOLOXOut, key_images_hw: list[tuple[int, int]], key_target_boxes: list[Tensor], key_target_classes: list[Tensor], key_embeddings: list[Tensor], ref_embeddings: list[list[Tensor]], key_track_ids: list[Tensor], ref_track_ids: list[list[Tensor]])[source]¶
Output of QDtrack YOLOX model.
Create new instance of YOLOXQDTrackOut(detector_out, key_images_hw, key_target_boxes, key_target_classes, key_embeddings, ref_embeddings, key_track_ids, ref_track_ids)
-
key_embeddings:
list
[Tensor
]¶ Alias for field number 4
-
key_images_hw:
list
[tuple
[int
,int
]]¶ Alias for field number 1
-
key_target_boxes:
list
[Tensor
]¶ Alias for field number 2
-
key_target_classes:
list
[Tensor
]¶ Alias for field number 3
-
key_track_ids:
list
[Tensor
]¶ Alias for field number 6
-
ref_embeddings:
list
[list
[Tensor
]]¶ Alias for field number 5
-
ref_track_ids:
list
[list
[Tensor
]]¶ Alias for field number 7
-
key_embeddings: