vis4d.op.box.anchor¶
Anchor and point generators.
- class AnchorGenerator(strides, ratios, scales=None, base_sizes=None, scale_major=True, octave_base_scale=None, scales_per_octave=None, centers=None, center_offset=0.0)[source]¶
Standard anchor generator for 2D anchor-based detectors.
Examples
>>> from vis4d.op.box.anchor import AnchorGenerator >>> self = AnchorGenerator([16], [1.], [1.], [9]) >>> all_anchors = self.grid_priors([(2, 2)], device='cpu') >>> print(all_anchors) [tensor([[-4.5000, -4.5000, 4.5000, 4.5000], [11.5000, -4.5000, 20.5000, 4.5000], [-4.5000, 11.5000, 4.5000, 20.5000], [11.5000, 11.5000, 20.5000, 20.5000]])] >>> self = AnchorGenerator([16, 32], [1.], [1.], [9, 18]) >>> all_anchors = self.grid_priors([(2, 2), (1, 1)], device='cpu') >>> print(all_anchors) [tensor([[-4.5000, -4.5000, 4.5000, 4.5000], [11.5000, -4.5000, 20.5000, 4.5000], [-4.5000, 11.5000, 4.5000, 20.5000], [11.5000, 11.5000, 20.5000, 20.5000]]), tensor([[-9., -9., 9., 9.]])]
Creates an instance of the class.
- Parameters:
strides (list[int] | list[tuple[int, int]]) – Strides of anchors in multiple feature levels in order (w, h).
ratios (list[float]) – The list of ratios between the height and width of anchors in a single level.
scales (list[int] | None) – Anchor scales for anchors in a single level. It cannot be set at the same time if octave_base_scale and scales_per_octave are set.
base_sizes (list[int] | None) – The basic sizes of anchors in multiple levels. If None is given, strides will be used as base_sizes. (If strides are non square, the shortest stride is taken.)
scale_major (bool) – Whether to multiply scales first when generating base anchors. If true, the anchors in the same row will have the same scales. By default it is True in V2.0
octave_base_scale (int) – The base scale of octave.
scales_per_octave (int) – Number of scales for each octave. octave_base_scale and scales_per_octave are usually used in retinanet and the scales should be None when they are set.
centers (list[tuple[float, float]] | None) – The centers of the anchor relative to the feature grid center in multiple feature levels. By default it is set to be None and not used. If a list of tuple of float is given, they will be used to shift the centers of anchors.
center_offset (float) – The offset of center in proportion to anchors’ width and height. By default it is 0 in V2.0.
- gen_base_anchors()[source]¶
Generate base anchors.
- Returns:
Base anchors of a feature grid in multiple feature levels.
- Return type:
list(torch.Tensor)
- gen_single_level_base_anchors(base_size, scales, ratios, center=None)[source]¶
Generate base anchors of a single level.
- Parameters:
base_size (int) – Basic size of an anchor.
scales (Tensor) – Scales of the anchor.
ratios (Tensor) – The ratio between between the height and width of anchors in a single level.
center (tuple[float], optional) – The center of the base anchor related to a single feature grid. Defaults to None.
- Returns:
Anchors in a single-level feature maps.
- Return type:
Tensor
- grid_priors(featmap_sizes, dtype=torch.float32, device=device(type='cpu'))[source]¶
Generate grid anchors in multiple feature levels.
- Parameters:
featmap_sizes (list[tuple]) – List of feature map sizes in multiple feature levels.
dtype (torch.dtype) – Dtype of priors. Default: torch.float32.
device (torch.device) – The device where the anchors will be put on.
- Returns:
- Anchors in multiple feature levels. The sizes of each
tensor should be [N, 4], where N = width * height * num_base_anchors, width and height are the sizes of the corresponding feature level, num_base_anchors is the number of anchors for that level.
- Return type:
list[Tensor]
- single_level_grid_priors(featmap_size, level_idx, dtype=torch.float32, device=device(type='cpu'))[source]¶
Generate grid anchors of a single level.
- Parameters:
featmap_size (tuple[int, int]) – Size of the feature maps.
level_idx (int) – The index of corresponding feature map level.
dtype (torch.dtype, optional) – Data type of points. Defaults to torch.float32.
device (torch.device) – The device the tensor will be put on.
- Returns:
Anchors in the overall feature maps.
- Return type:
Tensor
- property num_base_priors: list[int]¶
The number of priors at a point on the feature grid.
- Type:
list[int]
- property num_levels: int¶
number of feature levels that the generator will be applied.
- Type:
int
- class MlvlPointGenerator(strides, offset=0.5)[source]¶
Standard points generator for multi-level feature maps.
Used for 2D points-based detectors.
- Parameters:
strides (list[int] | list[tuple[int, int]]) – Strides of anchors in multiple feature levels in order (w, h).
offset (float) – The offset of points, the value is normalized with corresponding stride. Defaults to 0.5.
Init.
- grid_priors(featmap_sizes, dtype=torch.float32, device=device(type='cuda'), with_stride=False)[source]¶
Generate grid points of multiple feature levels.
- Parameters:
featmap_sizes (list[tuple[int, int]]) – List of feature map sizes in multiple feature levels, each (H, W).
dtype (torch.dtype) – Dtype of priors. Defaults to torch.float32.
device (torch.device) – The device where the anchors will be put on. Defaults to torch.device(“cuda”).
with_stride (bool) – Whether to concatenate the stride to the last dimension of points. Defaults to False,
- Returns:
- Points of multiple feature levels.
The sizes of each tensor should be (N, 2) when with stride is
False
, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h).
- Return type:
list[torch.Tensor]
- single_level_grid_priors(featmap_size, level_idx, dtype=torch.float32, device=device(type='cuda'), with_stride=False)[source]¶
Generate grid Points of a single level.
Note
This function is usually called by method
self.grid_priors
.- Parameters:
featmap_size (tuple[int, int]) – Size of the feature maps, (H, W).
level_idx (int) – The index of corresponding feature map level.
dtype (torch.dtype) – Dtype of priors. Defaults to torch.float32.
device (torch.device) – The device where the tensors will be put on. Defaults to torch.device(“cuda”).
with_stride (bool) – Concatenate the stride to the last dimension of points. Defaults to False,
- Returns:
- Points of single feature levels.
The shape of tensor should be (N, 2) when with stride is
False
, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h).
- Return type:
Tensor
- single_level_valid_flags(featmap_size, valid_size, device=device(type='cuda'))[source]¶
Generate the valid flags of points of a single feature map.
- Parameters:
featmap_size (tuple[int, int]) – The size of feature maps, (H, W).
valid_size (tuple[int, int]) – The valid size of the feature maps, (H, W).
device (torch.device, optional) – The device where the flags will be put on. Defaults to torch.device(“cuda”).
- Returns:
- The valid flags of each points in a single level
feature map.
- Return type:
torch.Tensor
- valid_flags(featmap_sizes, pad_shape, device=device(type='cuda'))[source]¶
Generate valid flags of points of multiple feature levels.
- Parameters:
featmap_sizes (list[tuple[int, int]]) – List of feature map sizes in multiple feature levels, each (H, W).
pad_shape (tuple[int, int]) – The padded shape of the image, (H, W).
device (torch.device) – The device where the anchors will be put on. Defaults to torch.device(“cuda”).
- Returns:
Valid flags of points of multiple levels.
- Return type:
list(torch.Tensor)
- property num_base_priors: list[int]¶
Number of points at a point on the feature grid.
- property num_levels: int¶
Number of feature levels.
- anchor_inside_image(flat_anchors, img_shape, allowed_border=0)[source]¶
Check whether the anchors are inside the border.
- Parameters:
flat_anchors (Tensor) – Flatten anchors, shape (n, 4).
img_shape (tuple(int)) – Shape of current image.
allowed_border (int) – The border to allow the valid anchor. Defaults to 0.
- Returns:
Flags indicating whether the anchors are inside a valid range.
- Return type:
Tensor
Modules
Anchor generator for 2D bounding boxes. |
|
Point generator for 2D bounding boxes. |
|
Anchor utils. |