vis4d.data.transforms.points¶
Pointwise transformations.
Classes
|
Adds random normal distributed noise with given std to the data. |
|
Adds random normal distributed noise with given std to the data. |
|
Applies a given SE3 Transform to the data. |
|
Applies a given SO3 Transform to the data. |
|
Centers and normalizes the pointcloud. |
|
Extracts the max and min values of the loaded points. |
|
Normalizes the pointcloud by the max bounds. |
Parameters for Resize. |
|
|
Transposes some predifined channels. |
- class AddGaussianNoise(*, in_keys=['points3d'], out_keys=['points3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Adds random normal distributed noise with given std to the data.
- Parameters:
std (float) – Standard Deviation of the noise
- class AddUniformNoise(*, in_keys=['points3d'], out_keys=['points3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Adds random normal distributed noise with given std to the data.
- Parameters:
std (float) – Standard Deviation of the noise
- class ApplySE3Transform(*, in_keys=['points3d'], out_keys=['points3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Applies a given SE3 Transform to the data.
- class ApplySO3Transform(*, in_keys=['points3d'], out_keys=['points3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Applies a given SO3 Transform to the data.
- class CenterAndNormalize(*, in_keys=['points3d'], out_keys=['points3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Centers and normalizes the pointcloud.
- class GenPcBounds(*, in_keys=['points3d'], out_keys=['transforms.pc_bounds'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Extracts the max and min values of the loaded points.
- class NormalizeByMaxBounds(*, in_keys=('points3d', 'trasforms.pc_bounds'), out_keys=['points3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Normalizes the pointcloud by the max bounds.