vis4d.zoo.base.optimizer¶
Optimizer configuration.
Functions
|
Default learning rate scheduler configuration. |
|
Default optimizer configuration. |
- get_lr_scheduler_cfg(scheduler, begin=0, end=-1, epoch_based=True, convert_epochs_to_steps=False, convert_attributes=None)[source]¶
Default learning rate scheduler configuration.
This creates a config object that can be initialized as a LearningRate scheduler for training.
- Parameters:
scheduler (ConfigDict) – Learning rate scheduler configuration.
begin (int, optional) – Begin epoch. Defaults to 0.
end (int, optional) – End epoch. Defaults to None. Defaults to -1.
epoch_based (bool, optional) – Whether the learning rate scheduler is epoch based or step based. Defaults to True.
convert_epochs_to_steps (bool) – Whether to convert the begin and end for a step based scheduler to steps automatically based on length of train dataloader. Enables users to set the iteration breakpoints as epochs. Defaults to False.
convert_attributes (list[str] | None) – List of attributes in the scheduler that should be converted to steps. Defaults to None.
- Returns:
- Config dict that can be instantiated as LearningRate
scheduler.
- Return type:
- get_optimizer_cfg(optimizer, lr_schedulers=None, param_groups=None)[source]¶
Default optimizer configuration.
This creates a config object that can be initialized as an Optimizer for training.
- Parameters:
optimizer (ConfigDict) – Optimizer configuration.
lr_schedulers (list[LrSchedulerConfig] | None, optional) – Learning rate schedulers configuration. Defaults to None.
param_groups (list[ParamGroupCfg] | None, optional) – Parameter groups configuration. Defaults to None.
- Returns:
Config dict that can be instantiated as Optimizer.
- Return type: