vis4d.model.detect.mask_rcnn¶
Mask RCNN model implementation and runtime.
Classes
|
Mask detection output. |
|
Mask RCNN model. |
|
Mask RCNN output. |
- class MaskDetectionOut(boxes: DetOut, masks: MaskOut)[source]¶
Mask detection output.
Create new instance of MaskDetectionOut(boxes, masks)
- class MaskRCNN(num_classes, basemodel=None, faster_rcnn_head=None, mask_head=None, rcnn_box_decoder=None, no_overlap=False, weights=None)[source]¶
Mask RCNN model.
- Parameters:
num_classes (int) – Number of classes.
basemodel (BaseModel, optional) – Base model network. Defaults to None. If None, will use ResNet50.
faster_rcnn_head (FasterRCNNHead, optional) – Faster RCNN head. Defaults to None. if None, will use default FasterRCNNHead.
mask_head (MaskRCNNHead, optional) – Mask RCNN head. Defaults to None. if None, will use default MaskRCNNHead.
rcnn_box_decoder (DeltaXYWHBBoxDecoder, optional) – Decoder for RCNN bounding boxes. Defaults to None.
no_overlap (bool, optional) – Whether to remove overlapping pixels between masks. Defaults to False.
weights (None | str, optional) – Weights to load for model. If set to “mmdet”, will load MMDetection pre-trained weights. Defaults to None.
Creates an instance of the class.
- forward(images, input_hw, boxes2d=None, boxes2d_classes=None, original_hw=None)[source]¶
Forward pass.
- Parameters:
images (torch.Tensor) – Input images.
input_hw (list[tuple[int, int]]) – Input image resolutions.
boxes2d (None | list[torch.Tensor], optional) – Bounding box labels. Required for training. Defaults to None.
boxes2d_classes (None | list[torch.Tensor], optional) – Class labels. Required for training. Defaults to None.
original_hw (None | list[tuple[int, int]], optional) – Original image resolutions (before padding and resizing). Required for testing. Defaults to None.
- Returns:
- Either raw model
outputs (for training) or predicted outputs (for testing).
- Return type:
- forward_test(images, images_hw, original_hw)[source]¶
Forward testing stage.
- Parameters:
images (torch.Tensor) – Input images.
images_hw (list[tuple[int, int]]) – Input image resolutions.
original_hw (list[tuple[int, int]]) – Original image resolutions (before padding and resizing).
- Returns:
Predicted outputs.
- Return type:
- forward_train(images, images_hw, target_boxes, target_classes)[source]¶
Forward training stage.
- Parameters:
images (torch.Tensor) – Input images.
images_hw (list[tuple[int, int]]) – Input image resolutions.
target_boxes (list[torch.Tensor]) – Bounding box labels. Required for training. Defaults to None.
target_classes (list[torch.Tensor]) – Class labels. Required for training. Defaults to None.
- Returns:
Raw model outputs.
- Return type:
- class MaskRCNNOut(boxes: FRCNNOut, masks: MaskRCNNHeadOut)[source]¶
Mask RCNN output.
Create new instance of MaskRCNNOut(boxes, masks)
-
masks:
MaskRCNNHeadOut
¶ Alias for field number 1
-
masks: