vis4d.data.transforms.point_sampling¶
Contains different Sampling Trasnforms for pointclouds.
Classes
|
Subsamples the pointcloud using blocks of a given size. |
|
Samples num_pts from the first dim of the provided data tensor. |
|
Samples num_pts from the first dim of the provided data tensor. |
|
Subsamples colors randomly. |
|
Subsamples instances randomly. |
|
Subsamples points randomly. |
|
Subsamples semantics randomly. |
- class GenFullCovBlockSamplingIndices(*, in_keys=['points3d'], out_keys=['transforms.sampling_idxs'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Subsamples the pointcloud using blocks of a given size.
- class GenerateBlockSamplingIndices(*, in_keys=['points3d'], out_keys=['transforms.sampling_idxs'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Samples num_pts from the first dim of the provided data tensor.
Makes sure that the sampled points are within a block of size block_size centered around center_xyz. If num_pts > data.shape[0], the indices will be upsampled with replacement. If num_pts < data.shape[0], the indices will be sampled without replacement.
- class GenerateSamplingIndices(*, in_keys=['points3d'], out_keys=['transforms.sampling_idxs'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Samples num_pts from the first dim of the provided data tensor.
If num_pts > data.shape[0], the indices will be upsampled with replacement. If num_pts < data.shape[0], the indices will be sampled without replacement.
- __call__(data_list)[source]¶
Samples num_pts from the first dim of the provided data tensor.
If num_pts > data.shape[0], the indices will be upsampled with replacement. If num_pts < data.shape[0], the indices will be sampled without replacement.
- Parameters:
data_list (list[NDArrayNumber]) – Data from which to sample indices.
- Returns:
List of indices.
- Return type:
list[NDArrayInt]
- Raises:
ValueError – If data is empty.
- class SampleColors(*, in_keys=['colors3d', 'transforms.sampling_idxs'], out_keys=['colors3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Subsamples colors randomly.
Samples ‘num_pts’ randomly from the provided data tensors using the provided sampling indices.
This transform is used to sample colors from a pointcloud. The indices are generated by the GenerateSamplingIndices transform.
- class SampleInstances(*, in_keys=['instances3d', 'transforms.sampling_idxs'], out_keys=['instances3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Subsamples instances randomly.
Samples ‘num_pts’ randomly from the provided data tensors using the provided sampling indices.
This transform is used to sample instances from a pointcloud. The indices are generated by the GenerateSamplingIndices transform.
- class SamplePoints(*, in_keys=['points3d', 'transforms.sampling_idxs'], out_keys=['points3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Subsamples points randomly.
Samples ‘num_pts’ randomly from the provided data tensors using the provided sampling indices.
This transform is used to sample points from a pointcloud. The indices are generated by the GenerateSamplingIndices transform.
- __call__(data_list, selected_idxs_list)[source]¶
Returns data[selected_idxs].
If the provided indices have two dimension (i.e n_masks, 64), then this operation indices the data n_masks times and returns an array
- Return type:
list
[Union
[ndarray
[Any
,dtype
[bool_
]],ndarray
[Any
,dtype
[float32
]],ndarray
[Any
,dtype
[float64
]],ndarray
[Any
,dtype
[int32
]],ndarray
[Any
,dtype
[int64
]],ndarray
[Any
,dtype
[uint8
]],ndarray
[Any
,dtype
[uint16
]],ndarray
[Any
,dtype
[uint32
]]]]
- class SampleSemantics(*, in_keys=['semantics3d', 'transforms.sampling_idxs'], out_keys=['semantics3d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Subsamples semantics randomly.
Samples ‘num_pts’ randomly from the provided data tensors using the provided sampling indices.
This transform is used to sample semantics from a pointcloud. The indices are generated by the GenerateSamplingIndices transform.