vis4d.model.seg.fcn_resnet

FCN Resnet Implementation.

Classes

FCNResNet([base_model, num_classes, resize])

FCN with ResNet basemodel for semantic segmentation.

class FCNResNet(base_model='resnet50', num_classes=21, resize=(520, 520))[source]

FCN with ResNet basemodel for semantic segmentation.

FCN with ResNet basemodel, following torchvision implementation.

<https://github.com/pytorch/vision/blob/main/torchvision/models/ segmentation/fcn.py>_.

model: FCNResNet(base_model=”resnet50”)
  • dataset: Coco2017

  • recipe: vis4d/model/segment/FCNResNet_coco_training.py

  • metrics:
    • mIoU: 62.52

    • Acc: 90.50

forward(images)[source]

Forward pass.

Parameters:

images (torch.Tensor) – Input images.

Returns:

Raw model predictions.

Return type:

FCNOut

forward_test(images)[source]

Forward pass for testing.

Parameters:

images (torch.Tensor) – Input images.

Returns:

Raw model predictions.

Return type:

FCNOut

forward_train(images)[source]

Forward pass for training.

Parameters:

images (torch.Tensor) – Input images.

Returns:

Raw model predictions.

Return type:

FCNOut