vis4d.pl.trainer¶
Trainer for PyTorch Lightning.
Classes
|
Trainer for PyTorch Lightning. |
- class PLTrainer(*args, work_dir, exp_name, version, epoch_based=True, find_unused_parameters=False, save_top_k=1, checkpoint_period=1, checkpoint_callback=None, wandb=False, seed=-1, **kwargs)[source]¶
Trainer for PyTorch Lightning.
Perform some basic common setups at the beginning of a job.
- Parameters:
work_dir (
str
) – Specific directory to save checkpoints, logs, etc. Integrates with exp_name and version to get output_dir.exp_name (
str
) – Name of current experiment.version (
str
) – Version of current experiment.epoch_based (
bool
) – Use epoch-based / iteration-based training. Default is True.find_unused_parameters (
bool
) – Activates PyTorch checking for unused parameters in DDP setting. Default: False, for better performance.save_top_k (
int
) – Save top k checkpoints. Default: 1 (save last).checkpoint_period (
int
) – After N epochs / stpes, save out checkpoints. Default: 1.checkpoint_callback (
Optional
[ModelCheckpoint
]) – Custom PL checkpoint callback. Default: None.wandb (
bool
) – Use weights and biases logging instead of tensorboard. Default: False.seed (int, optional) – The integer value seed for global random state. Defaults to -1. If -1, a random seed will be generated. This will be set by TrainingModule.