vis4d.vis.image¶
Image Visualization.
- class BoundingBoxVisualizer(*args, n_colors=50, class_id_mapping=None, file_type='png', canvas=<vis4d.vis.image.canvas.pillow_backend.PillowCanvasBackend object>, viewer=<vis4d.vis.image.viewer.matplotlib_viewer.MatplotlibImageViewer object>, **kwargs)[source]¶
Bounding box visualizer class.
Creates a new Visualizer for Image and Bounding Boxes.
- Parameters:
n_colors (int) – How many colors should be used for the internal color map
class_id_mapping (dict[int, str]) – Mapping from class id to human readable name
file_type (str) – Desired file type
canvas (CanvasBackend) – Backend that is used to draw on images
viewer (ImageViewerBackend) – Backend that is used show images
- process(cur_iter, images, image_names, boxes, scores=None, class_ids=None, track_ids=None)[source]¶
Processes a batch of data.
- Parameters:
cur_iter (int) – Current iteration.
images (list[ArrayLike]) – Images to show.
image_names (list[str]) – Image names.
boxes (list[ArrayLikeFloat]) – List of predicted bounding boxes with shape [N, (x1, y1, x2, y2)], where N is the number of boxes.
scores (None | list[ArrayLikeFloat], optional) – List of predicted box scores each of shape [N]. Defaults to None.
class_ids (None | list[ArrayLikeInt], optional) – List of predicted class ids each of shape [N]. Defaults to None.
track_ids (None | list[ArrayLikeInt], optional) – List of predicted track ids each of shape [N]. Defaults to None.
- Return type:
None
- process_single_image(image, image_name, boxes, scores=None, class_ids=None, track_ids=None)[source]¶
Processes a single image entry.
- Parameters:
image (ArrayLike) – Image to show.
image_name (str) – Image name.
boxes (ArrayLikeFloat) – Predicted bounding boxes with shape [N, (x1,y1,x2,y2)], where N is the number of boxes.
scores (None | ArrayLikeFloat, optional) – Predicted box scores of shape [N]. Defaults to None.
class_ids (None | ArrayLikeInt, optional) – Predicted class ids of shape [N]. Defaults to None.
track_ids (None | ArrayLikeInt, optional) – Predicted track ids of shape [N]. Defaults to None.
- Return type:
None
- save_to_disk(cur_iter, output_folder)[source]¶
Saves the visualization to disk.
Writes all processes samples to the output folder naming each image <sample.image_name>.<filetype>.
- Parameters:
cur_iter (int) – Current iteration.
output_folder (str) – Folder where the output should be written.
- Return type:
None
- class SegMaskVisualizer(*args, n_colors=50, class_id_mapping=None, file_type='png', color_palette=None, canvas=<vis4d.vis.image.canvas.pillow_backend.PillowCanvasBackend object>, viewer=<vis4d.vis.image.viewer.matplotlib_viewer.MatplotlibImageViewer object>, **kwargs)[source]¶
Segmentation mask visualizer class.
Creates a new Visualizer for Image and Bounding Boxes.
- Parameters:
n_colors (int) – How many colors should be used for the color map.
class_id_mapping (dict[int, str]) – Mapping from class id to human readable name.
file_type (str) – Desired file type
color_palette (list[tuple[int, int, int]]) – Color palette for each class, in RGB format (0-255). If None, a random color palette with n_colors is generated automatically. Defaults to None.
canvas (CanvasBackend) – Backend that is used to draw on images
viewer (ImageViewerBackend) – Backend that is used show images
- process(cur_iter, images, image_names, masks, class_ids=None)[source]¶
Processes a batch of data.
- Parameters:
cur_iter (int) – Current iteration.
images (list[ArrayLikeFloat]) – Images to show.
image_names (list[str]) – Image names.
masks (list[ArrayLikeUInt]) – Segmentation masks to show, each with shape [H, W] or [N, H, W]. If the shape is [H, W], the mask is assumed to be a semantic segmentation mask with each pixel being the class id. If the shape is [N, H, W], each mask is assumed to be a binary mask with each pixel being either 0 or 1.
class_ids (list[ArrayLikeInt], optional) – Class ids for each mask, with shape [N]. If set, the masks are assumed to be binary masks and the length of class_ids must match the amount of masks. Defaults to None.
- Return type:
None
- process_single_image(image, image_name, masks, class_ids=None)[source]¶
Processes a single image entry.
- Parameters:
image (ArrayLikeFloat) – Images to show.
image_name (str) – Name of the image.
masks (ArrayLikeUInt) – Binary masks to show, each with shape [N, H, W] or [H, W].
class_ids (ArrayLikeInt, optional) – Class ids for each mask, with shape [N]. Defaults to None.
- Return type:
None
- save_to_disk(cur_iter, output_folder)[source]¶
Saves the visualization to disk.
Writes all processes samples to the output folder naming each image <sample.image_name>.<filetype>.
- Parameters:
cur_iter (int) – Current iteration.
output_folder (str) – Folder where the output should be written.
- Return type:
None
Modules
Bounding box 3D visualizer. |
|
BEV Bounding box 3D visualizer. |
|
Bounding box visualizer. |
|
Vis4D image canvas backends. |
|
Segmentation mask visualizer. |
|
Utility functions for image processing operations. |
|
Viewer implementations to display images. |