vis4d.vis.functional¶
Function interface for visualization functions.
- draw_bboxes(image, boxes, scores=None, class_ids=None, track_ids=None, class_id_mapping=None, n_colors=50, image_mode='RGB', box_width=1, canvas=<vis4d.vis.image.canvas.pillow_backend.PillowCanvasBackend object>)[source]¶
Draws the predicted bounding boxes into the given image.
- Parameters:
image (ArrayLike) – The image to draw the bboxes into.
boxes (ArrayLikeFloat) – Predicted bounding boxes.
scores (None | ArrayLikeFloat, optional) – Predicted scores. Defaults to None.
class_ids (ArrayLikeInt, optional) – Predicted class ids. Defaults to None.
track_ids (ArrayLikeInt, optional) – Predicted track ids. Defaults to None.
class_id_mapping (dict[int, str], optional) – Mapping from class id to name. Defaults to None.
n_colors (int, optional) – Number of colors to use for color palette. Defaults to 50.
image_mode (str, optional) – Image Mode. Defaults to “RGB”.
box_width (int, optional) – Width of the box border. Defaults to 1.
canvas (CanvasBackend, optional) – Canvas backend to use. Defaults to PillowCanvasBackend().
- Returns:
The image with boxes drawn into it,
- Return type:
NDArrayUI8
- draw_masks(image, masks, class_ids, n_colors=50, image_mode='RGB', canvas=<vis4d.vis.image.canvas.pillow_backend.PillowCanvasBackend object>)[source]¶
Draws semantic masks into the given image.
- Parameters:
image (ArrayLike) – The image to draw the bboxes into.
masks (ArrayLikeBool) – The semantic masks with the same shape as the image.
class_ids (ArrayLikeInt, optional) – Predicted class ids. Defaults to None.
n_colors (int, optional) – Number of colors to use for color palette. Defaults to 50.
image_mode (str, optional) – Image Mode. Defaults to “RGB”.
canvas (CanvasBackend, optional) – Canvas backend to use. Defaults to PillowCanvasBackend().
- Returns:
The image with semantic masks drawn into it,
- Return type:
NDArrayUI8
- draw_points(points_xyz, colors=None, classes=None, instances=None, transform=None, scene=None)[source]¶
Adds pointcloud data to a 3D scene for visualization purposes.
- Parameters:
points_xyz (ArrayLikeFloat) – xyz coordinates of the points shape [N, 3]
classes (ArrayLikeInt | None) – semantic ids of the points shape [N, 1]
instances (ArrayLikeInt | None) – instance ids of the points shape [N, 1]
colors (ArrayLikeFloat | None) – colors of the points shape [N,3] and ranging from [0,1]
transform (ArrayLikeFloat | None) – Optional 4x4 SE3 transform that transforms the point data into a static reference frame.
scene (Scene3D | None) – Visualizer that should be used to display the data.
- Return type:
Scene3D
- imshow(image, image_mode='RGB', image_viewer=<vis4d.vis.image.viewer.matplotlib_viewer.MatplotlibImageViewer object>)[source]¶
Shows a single image.
- Parameters:
image (NDArrayNumber) – The image to show.
image_mode (str, optional) – Image Mode. Defaults to “RGB”.
image_viewer (ImageViewerBackend, optional) – The Image viewer backend to use. Defaults to MatplotlibImageViewer().
- Return type:
None
- imshow_bboxes(image, boxes, scores=None, class_ids=None, track_ids=None, class_id_mapping=None, n_colors=50, image_mode='RGB', box_width=1, image_viewer=<vis4d.vis.image.viewer.matplotlib_viewer.MatplotlibImageViewer object>)[source]¶
Shows the bounding boxes overlayed on the given image.
- Parameters:
image (ArrayLike) – Background Image
boxes (ArrayLikeFloat) – Boxes to show. Shape [N, 4] with (x1,y1,x2,y2) as corner convention
scores (ArrayLikeFloat, optional) – Score for each box shape [N]
class_ids (ArrayLikeInt, optional) – Class id for each box shape [N]
track_ids (ArrayLikeInt, optional) – Track id for each box shape [N]
class_id_mapping (dict[int, str], optional) – Mapping to convert class id to class name
n_colors (int, optional) – Number of distinct colors used to color the boxes. Defaults to 50.
image_mode (str, optional) – Image channel mode (RGB or BGR).
box_width (int, optional) – Width of the box border. Defaults to 1.
image_viewer (ImageViewerBackend, optional) – The Image viewer backend to use. Defaults to MatplotlibImageViewer().
- Return type:
None
- imshow_masks(image, masks, class_ids, n_colors=50, image_mode='RGB', canvas=<vis4d.vis.image.canvas.pillow_backend.PillowCanvasBackend object>, image_viewer=<vis4d.vis.image.viewer.matplotlib_viewer.MatplotlibImageViewer object>)[source]¶
Shows semantic masks overlayed over the given image.
- Parameters:
image (ArrayLike) – The image to draw the bboxes into.
masks (ArrayLikeBool) – The semantic masks with the same shape as the image.
class_ids (ArrayLikeInt, optional) – Predicted class ids. Defaults to None.
n_colors (int, optional) – Number of colors to use for color palette. Defaults to 50.
image_mode (str, optional) – Image Mode.. Defaults to “RGB”.
canvas (CanvasBackend, optional) – Canvas backend to use. Defaults to PillowCanvasBackend().
image_viewer (ImageViewerBackend, optional) – The Image viewer backend to use. Defaults to MatplotlibImageViewer().
- Return type:
None
- imshow_topk_bboxes(image, boxes, scores, topk=100, class_ids=None, track_ids=None, class_id_mapping=None, n_colors=50, image_mode='RGB', box_width=1, image_viewer=<vis4d.vis.image.viewer.matplotlib_viewer.MatplotlibImageViewer object>)[source]¶
Visualize the ‘topk’ bounding boxes with highest score.
- Parameters:
image (ArrayLike) – Background Image
boxes (ArrayLikeFloat) – Boxes to show. Shape [N, 4] with (x1,y1,x2,y2) as corner convention
scores (ArrayLikeFloat) – Score for each box shape [N]
topk (int) – Number of boxes to visualize
class_ids (ArrayLikeInt, optional) – Class id for each box shape [N]
track_ids (ArrayLikeInt, optional) – Track id for each box shape [N]
class_id_mapping (dict[int, str], optional) – Mapping to convert class id to class name
n_colors (int, optional) – Number of distinct colors used to color the boxes. Defaults to 50.
image_mode (str, optional) – Image channel mode (RGB or BGR).
box_width (int, optional) – Width of the box border. Defaults to 1.
image_viewer (ImageViewerBackend, optional) – The Image viewer backend to use. Defaults to MatplotlibImageViewer().
- Return type:
None
- imshow_track_matches(key_imgs, ref_imgs, key_boxes, ref_boxes, key_track_ids, ref_track_ids, image_mode='RGB', image_viewer=<vis4d.vis.image.viewer.matplotlib_viewer.MatplotlibImageViewer object>)[source]¶
Visualize paired bounding boxes successively for batched frame pairs.
- Parameters:
key_imgs (list[ArrayLike]) – Key Images.
ref_imgs (list[ArrayLike]) – Reference Images.
key_boxes (list[ArrayLikeFloat]) – Predicted Boxes for the key image. Shape [N, 4]
ref_boxes (list[ArrayLikeFloat]) – Predicted Boxes for the key image. Shape [N, 4]
key_track_ids (list[ArrayLikeInt]) – Predicted ids for the key images.
ref_track_ids (list[ArrayLikeInt]) – Predicted ids for the reference images.
image_mode (str, optional) – Color mode if the image. Defaults to “RGB”.
image_viewer (ImageViewerBackend, optional) – The Image viewer backend to use. Defaults to MatplotlibImageViewer().
- Return type:
None
- show_3d(scene, viewer=<vis4d.vis.pointcloud.viewer.open3d_viewer.Open3DVisualizationBackend object>)[source]¶
Shows a given 3D scene.
This method shows a 3D visualization of a given 3D scene. Use the viewer attribute to use different visualization backends (e.g. open3d)
- Parameters:
scene (Scene3D) – The 3D scene that should be visualized.
viewer (PointCloudVisualizerBackend, optional) – The Visualization backend that should be used to visualize the scene. Defaults to Open3DVisualizationBackend.
- Return type:
None
- show_points(points_xyz, colors=None, classes=None, instances=None, transform=None, viewer=<vis4d.vis.pointcloud.viewer.open3d_viewer.Open3DVisualizationBackend object>)[source]¶
Visualizes a pointcloud with color and semantic information.
- Parameters:
points_xyz (ArrayLikeFloat) – xyz coordinates of the points shape [N, 3]
classes (ArrayLikeInt | None) – semantic ids of the points shape [N, 1]
instances (ArrayLikeInt | None) – instance ids of the points shape [N, 1]
colors (ArrayLikeFloat | None) – colors of the points shape [N,3] and ranging from [0,1]
transform (ArrayLikeFloat | None) – Optional 4x4 SE3 transform that transforms the point data into a static reference frame
viewer (PointCloudVisualizerBackend, optional) – The Visualization backend that should be used to visualize the scene. Defaults to Open3DVisualizationBackend.
- Return type:
None
Modules
Function interface for image visualization functions. |
|
Function interface for point cloud visualization functions. |