vis4d.data.transforms.autoaugment

A wrap for timm transforms.

Classes

AugMix(*[, in_keys, out_keys, sensors, ...])

Apply Timm's AugMix to a image tensor.

AutoAugOriginal([magnitude_std])

Apply Timm's AutoAugment (policy=original) to a image array.

AutoAugV0([magnitude_std])

Apply Timm's AutoAugment (policy=v0) to a image array.

RandAug(*[, in_keys, out_keys, sensors, ...])

Apply Timm's RandomAugment to a image tensor.

class AugMix(*, in_keys=['images'], out_keys=['images'], sensors=None, same_on_batch=True, **kwargs)[source]

Apply Timm’s AugMix to a image tensor.

__call__(images)[source]

Execute the transform.

Return type:

list[ndarray[Any, dtype[uint8]]]

class AutoAugOriginal(magnitude_std=0.5)[source]

Apply Timm’s AutoAugment (policy=original) to a image array.

Create an instance of AutoAug.

Parameters:

magnitude_std (float, optional) – Standard deviation of the magnitude for random autoaugment. Defaults to 0.5.

class AutoAugV0(magnitude_std=0.5)[source]

Apply Timm’s AutoAugment (policy=v0) to a image array.

Create an instance of AutoAug.

Parameters:

magnitude_std (float, optional) – Standard deviation of the magnitude for random autoaugment. Defaults to 0.5.

class RandAug(*, in_keys=['images'], out_keys=['images'], sensors=None, same_on_batch=True, **kwargs)[source]

Apply Timm’s RandomAugment to a image tensor.

__call__(images)[source]

Execute the transform.

Return type:

list[ndarray[Any, dtype[uint8]]]