vis4d.data.transforms.resize¶
Resize transformation.
Functions
|
Get shape for resize, considering keep_ratio and align_long_edge. |
|
Generate possibly random target shape. |
|
Resize image. |
|
Resize Tensor. |
Classes
|
Generate the parameters for a resize operation. |
|
Resize list of 2D bounding boxes. |
|
Resize depth maps. |
|
Resize Images. |
|
Resize instance segmentation masks. |
|
Resize Intrinsics. |
|
Resize optical flows. |
Parameters for Resize. |
|
|
Resize segmentation masks. |
- class GenResizeParameters(*, in_keys=['images'], out_keys=['transforms.resize', 'input_hw'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Generate the parameters for a resize operation.
- __call__(images)[source]¶
Compute the parameters and put them in the data dict.
- Return type:
tuple
[list
[ResizeParam
],list
[tuple
[int
,int
]]]
- class ResizeBoxes2D(*, in_keys=['boxes2d', 'transforms.resize.scale_factor'], out_keys=['boxes2d'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Resize list of 2D bounding boxes.
- __call__(boxes_list, scale_factors)[source]¶
Resize 2D bounding boxes.
- Parameters:
boxes_list (
list
[ndarray
[Any
,dtype
[float32
]]]) – (list[NDArrayF32]): The bounding boxes to be resized.scale_factors (list[tuple[float, float]]) – scaling factors.
- Returns:
- Resized bounding boxes according to parameters in
resize.
- Return type:
list[NDArrayF32]
- class ResizeDepthMaps(*, in_keys=['depth_maps', 'transforms.resize.target_shape', 'transforms.resize.scale_factor'], out_keys=['depth_maps'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Resize depth maps.
- class ResizeImages(*, in_keys=['images', 'transforms.resize.target_shape'], out_keys=['images'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Resize Images.
- class ResizeInstanceMasks(*, in_keys=['instance_masks', 'transforms.resize.target_shape'], out_keys=['instance_masks'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Resize instance segmentation masks.
- class ResizeIntrinsics(*, in_keys=['intrinsics', 'transforms.resize.scale_factor'], out_keys=['intrinsics'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Resize Intrinsics.
- class ResizeOpticalFlows(*, in_keys=['optical_flows', 'transforms.resize.target_shape', 'transforms.resize.scale_factor'], out_keys=['optical_flows'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Resize optical flows.
- class ResizeSegMasks(*, in_keys=['seg_masks', 'transforms.resize.target_shape'], out_keys=['seg_masks'], sensors=None, same_on_batch=True, **kwargs)[source]¶
Resize segmentation masks.
- get_resize_shape(original_shape, new_shape, keep_ratio=True, align_long_edge=False, resize_short_edge=False, allow_overflow=False)[source]¶
Get shape for resize, considering keep_ratio and align_long_edge.
- Parameters:
original_shape (tuple[int, int]) – Original shape in [H, W].
new_shape (tuple[int, int]) – New shape in [H, W].
keep_ratio (bool, optional) – Whether to keep the aspect ratio. Defaults to True.
align_long_edge (bool, optional) – Whether to align the long edge of the original shape with the long edge of the new shape. Defaults to False.
resize_short_edge (bool, optional) – Whether to resize according to the short edge. Defaults to False.
allow_overflow (bool, optional) – Whether to allow overflow. Defaults to False.
- Returns:
The new shape in [H, W].
- Return type:
tuple[int, int]
- get_target_shape(input_shape, shape, keep_ratio=False, multiscale_mode='range', scale_range=(1.0, 1.0), align_long_edge=False, resize_short_edge=False, allow_overflow=False)[source]¶
Generate possibly random target shape.
- Return type:
tuple
[int
,int
]