vis4d.eval.common.seg¶
Common segmentation evaluator.
Classes
|
Creates an evaluator that calculates mIoU score and confusion matrix. |
- class SegEvaluator(num_classes=None, class_to_ignore=None, class_mapping=None)[source]¶
Creates an evaluator that calculates mIoU score and confusion matrix.
Creates a new evaluator.
- Parameters:
num_classes (int) – Number of semantic classes
class_to_ignore (int | None) – Groundtruth class that should be ignored
class_mapping (int) – dict mapping each class_id to a readable name
- calc_confusion_matrix(prediction, groundtruth)[source]¶
Calculates the confusion matrix for multi class predictions.
- Parameters:
prediction (array) – Class predictions
groundtruth (array) – Groundtruth classes
- Return type:
ndarray
[Any
,dtype
[int64
]]- Returns:
Confusion Matrix of dimension n_classes x n_classes.
- evaluate(metric)[source]¶
Evaluate predictions.
Returns a dict containing the raw data and a short description string containing a readable result.
- Parameters:
metric (str) – Metric to use. See @property metric.
- Return type:
tuple
[Dict
[str
,Union
[float
,int
,Tensor
]],str
]- Returns:
(dict, str) containing the raw data and a short description string.
- Raises:
ValueError – If metric is not supported.
- process_batch(prediction, groundtruth)[source]¶
Process sample and update confusion matrix.
- Parameters:
prediction (ArrayLike) – Predictions of shape [N,C,…] or [N,…] with C* being any number if channels. Note, C is passed, the prediction is converted to target labels by applying the max operations along the second axis
groundtruth (ArrayLike) – Groundtruth of shape [N_batch, …] type int
- Return type:
None
- property metrics: list[str]¶
Supported metrics.