vis4d.eval.common.binary¶
Binary occupancy evaluator.
Functions
|
Thresholds the predictions based on the provided treshold value. |
Classes
|
Creates a new Evaluater that evaluates binary predictions. |
- class BinaryEvaluator(threshold=0.5)[source]¶
Creates a new Evaluater that evaluates binary predictions.
Creates a new binary evaluator.
- Parameters:
threshold (float) – Threshold for prediction to convert to binary. All prediction that are higher than this value will be assigned the ‘True’ label
- evaluate(metric)[source]¶
Evaluate predictions.
Returns a dict containing the raw data and a short description string containing a readable result.
- Parameters:
metric (str) – Metric to use. See @property metric
- Return type:
tuple
[Dict
[str
,Union
[float
,int
,Tensor
]],str
]- Returns:
metric_data, description tuple containing the metric data (dict with metric name and value) as well as a short string with shortened information.
- Raises:
RuntimeError – if no data has been registered to be evaluated.
ValueError – if metric is not supported.
- process_batch(prediction, groundtruth)[source]¶
Processes a new (batch) of predictions.
Calculates the metrics and caches them internally.
- Parameters:
prediction (ArrayLike) – the prediction(continuous values or bin) (Batch x Pts)
groundtruth (ArrayLike) – the groundtruth (binary) (Batch x Pts)
- Return type:
None
- property metrics: list[str]¶
Supported metrics.
- threshold_and_flatten(prediction, target, threshold_value)[source]¶
Thresholds the predictions based on the provided treshold value.
- Applies the following actions:
prediction -> prediction >= threshold_value pred, gt = pred.ravel().bool(), gt.ravel().bool()
- Parameters:
prediction (
Union
[ndarray
[Any
,dtype
[bool_
]],ndarray
[Any
,dtype
[float32
]],ndarray
[Any
,dtype
[float64
]],ndarray
[Any
,dtype
[int32
]],ndarray
[Any
,dtype
[int64
]],ndarray
[Any
,dtype
[uint8
]],ndarray
[Any
,dtype
[uint16
]],ndarray
[Any
,dtype
[uint32
]]]) – Prediction array with continuous valuestarget (
Union
[ndarray
[Any
,dtype
[bool_
]],ndarray
[Any
,dtype
[float32
]],ndarray
[Any
,dtype
[float64
]],ndarray
[Any
,dtype
[int32
]],ndarray
[Any
,dtype
[int64
]],ndarray
[Any
,dtype
[uint8
]],ndarray
[Any
,dtype
[uint16
]],ndarray
[Any
,dtype
[uint32
]]]) – Grondgtruth values {0,1}threshold_value (
float
) – Value to use to convert the continuous prediction into binary.
- Return type:
tuple
[ndarray
[Any
,dtype
[bool_
]],ndarray
[Any
,dtype
[bool_
]]]- Returns:
tuple of two boolean arrays, prediction and target