Source code for vis4d.op.base.csp_darknet

"""CSP-Darknet base network used in YOLOX.

Modified from mmdetection (https://github.com/open-mmlab/mmdetection).
"""

from __future__ import annotations

import math
from collections.abc import Sequence

import torch
from torch import nn
from torch.nn.modules.batchnorm import _BatchNorm

from vis4d.op.layer import Conv2d, CSPLayer


[docs] class Focus(nn.Module): """Focus width and height information into channel space. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. kernel_size (int, optional): The kernel size of the convolution. Defaults to 1. stride (int, optional): The stride of the convolution. Defaults to 1. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 1, stride: int = 1, ): """Init.""" super().__init__() self.conv = Conv2d( in_channels * 4, out_channels, kernel_size, stride, padding=(kernel_size - 1) // 2, bias=False, norm=nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.03), activation=nn.SiLU(inplace=True), )
[docs] def forward(self, features: torch.Tensor) -> torch.Tensor: """Forward pass. Args: features (torch.Tensor): The input tensor of shape [B, C, W, H]. """ patch_top_left = features[..., ::2, ::2] patch_top_right = features[..., ::2, 1::2] patch_bot_left = features[..., 1::2, ::2] patch_bot_right = features[..., 1::2, 1::2] x = torch.cat( ( patch_top_left, patch_bot_left, patch_top_right, patch_bot_right, ), dim=1, ) return self.conv(x)
[docs] class SPPBottleneck(nn.Module): """Spatial pyramid pooling layer used in YOLOv3-SPP. Args: in_channels (int): Input channels. out_channels (int): Output channels. kernel_sizes (Sequence[int], optional): Sequential of kernel sizes of pooling layers. Defaults to (5, 9, 13). """ def __init__( self, in_channels: int, out_channels: int, kernel_sizes: Sequence[int] = (5, 9, 13), ): """Init.""" super().__init__() mid_channels = in_channels // 2 self.conv1 = Conv2d( in_channels, mid_channels, 1, stride=1, bias=False, norm=nn.BatchNorm2d(mid_channels, eps=0.001, momentum=0.03), activation=nn.SiLU(inplace=True), ) self.poolings = nn.ModuleList( [ nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes ] ) conv2_channels = mid_channels * (len(kernel_sizes) + 1) self.conv2 = Conv2d( conv2_channels, out_channels, 1, bias=False, norm=nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.03), activation=nn.SiLU(inplace=True), )
[docs] def forward(self, features: torch.Tensor) -> torch.Tensor: """Forward pass. Args: features (torch.Tensor): Input features. """ x = self.conv1(features) x = torch.cat([x] + [pooling(x) for pooling in self.poolings], dim=1) x = self.conv2(x) return x
[docs] class CSPDarknet(nn.Module): """CSP-Darknet backbone used in YOLOv5 and YOLOX. Args: arch (str): Architecture of CSP-Darknet, from {P5, P6}. Default: P5. deepen_factor (float): Depth multiplier, multiply number of blocks in CSP layer by this amount. Default: 1.0. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0. out_indices (Sequence[int]): Output from which stages. Default: (2, 3, 4). frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1. use_depthwise (bool): Whether to use depthwise separable convolution. Default: False. arch_ovewrite(list[list[int]], optional): Overwrite default arch settings. Defaults to None. spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP layers. Default: (5, 9, 13). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Example: >>> import torch >>> from vis4d.op.base import CSPDarknet >>> self = CSPDarknet() >>> self.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13) """ # From left to right: # in_channels, out_channels, num_blocks, add_identity, use_spp arch_settings = { "P5": [ [64, 128, 3, True, False], [128, 256, 9, True, False], [256, 512, 9, True, False], [512, 1024, 3, False, True], ], "P6": [ [64, 128, 3, True, False], [128, 256, 9, True, False], [256, 512, 9, True, False], [512, 768, 3, True, False], [768, 1024, 3, False, True], ], } def __init__( self, arch: str = "P5", deepen_factor: float = 1.0, widen_factor: float = 1.0, out_indices: Sequence[int] = (2, 3, 4), frozen_stages: int = -1, arch_ovewrite: list[list[int]] | None = None, spp_kernal_sizes: Sequence[int] = (5, 9, 13), norm_eval: bool = False, ): """Init.""" super().__init__() arch_setting = self.arch_settings[arch] if arch_ovewrite: arch_setting = arch_ovewrite assert set(out_indices).issubset( i for i in range(len(arch_setting) + 1) ) if frozen_stages not in range(-1, len(arch_setting) + 1): raise ValueError( "frozen_stages must be in range(-1, " "len(arch_setting) + 1). But received " f"{frozen_stages}" ) self.out_indices = out_indices self.frozen_stages = frozen_stages self.norm_eval = norm_eval self.stem = Focus( 3, int(arch_setting[0][0] * widen_factor), kernel_size=3 ) self.layers = ["stem"] for i, ( in_channels, out_channels, num_blocks, add_identity, use_spp, ) in enumerate(arch_setting): in_channels = int(in_channels * widen_factor) out_channels = int(out_channels * widen_factor) num_blocks = max(round(num_blocks * deepen_factor), 1) stage: list[nn.Module] = [] conv_layer = Conv2d( in_channels, out_channels, 3, stride=2, padding=1, bias=False, norm=nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.03), activation=nn.SiLU(inplace=True), ) stage.append(conv_layer) if use_spp: spp = SPPBottleneck( out_channels, out_channels, kernel_sizes=spp_kernal_sizes ) stage.append(spp) csp_layer = CSPLayer( out_channels, out_channels, num_blocks=num_blocks, add_identity=bool(add_identity), ) stage.append(csp_layer) self.add_module(f"stage{i + 1}", nn.Sequential(*stage)) self.layers.append(f"stage{i + 1}") self._init_weights() def _init_weights(self) -> None: """Initialize weights.""" for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_uniform_( m.weight, a=math.sqrt(5), mode="fan_in", nonlinearity="leaky_relu", ) def _freeze_stages(self) -> None: """Freeze stages.""" if self.frozen_stages >= 0: for i in range(self.frozen_stages + 1): m = getattr(self, self.layers[i]) m.eval() for param in m.parameters(): param.requires_grad = False
[docs] def train(self, mode: bool = True) -> CSPDarknet: """Override the train mode for the model. Args: mode (bool): Whether to set training mode to True. """ super().train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval() return self
[docs] def forward(self, images: torch.Tensor) -> list[torch.Tensor]: """Forward pass. Args: images (torch.Tensor): Input images. """ outs = [images, images] x = images for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) return outs