Source code for vis4d.model.detect.faster_rcnn

"""Faster RCNN model implementation and runtime."""

from __future__ import annotations

import torch
from torch import nn

from vis4d.common.ckpt import load_model_checkpoint
from vis4d.op.base import BaseModel, ResNet
from vis4d.op.box.box2d import scale_and_clip_boxes
from vis4d.op.box.encoder import DeltaXYWHBBoxDecoder
from vis4d.op.detect.common import DetOut
from vis4d.op.detect.faster_rcnn import FasterRCNNHead, FRCNNOut
from vis4d.op.detect.rcnn import RoI2Det
from vis4d.op.fpp.fpn import FPN

REV_KEYS = [
    (r"^backbone\.", "basemodel."),
    (r"^rpn_head.rpn_reg\.", "faster_rcnn_head.rpn_head.rpn_box."),
    (r"^rpn_head.rpn_", "faster_rcnn_head.rpn_head.rpn_"),
    (r"^roi_head.bbox_head\.", "faster_rcnn_head.roi_head."),
    (r"^neck.lateral_convs\.", "fpn.inner_blocks."),
    (r"^neck.fpn_convs\.", "fpn.layer_blocks."),
    (r"\.conv.weight", ".weight"),
    (r"\.conv.bias", ".bias"),
]


[docs] class FasterRCNN(nn.Module): """Faster RCNN model.""" def __init__( self, num_classes: int, basemodel: BaseModel | None = None, faster_rcnn_head: FasterRCNNHead | None = None, rcnn_box_decoder: DeltaXYWHBBoxDecoder | None = None, weights: None | str = None, ) -> None: """Creates an instance of the class. Args: num_classes (int): Number of object categories. basemodel (BaseModel, optional): Base model network. Defaults to None. If None, will use ResNet50. faster_rcnn_head (FasterRCNNHead, optional): Faster RCNN head. Defaults to None. if None, will use default FasterRCNNHead. rcnn_box_decoder (DeltaXYWHBBoxDecoder, optional): Decoder for RCNN bounding boxes. Defaults to None. weights (str, optional): Weights to load for model. If set to "mmdet", will load MMDetection pre-trained weights. Defaults to None. """ super().__init__() self.basemodel = ( ResNet(resnet_name="resnet50", pretrained=True, trainable_layers=3) if basemodel is None else basemodel ) self.fpn = FPN(self.basemodel.out_channels[2:], 256) if faster_rcnn_head is None: self.faster_rcnn_head = FasterRCNNHead(num_classes=num_classes) else: self.faster_rcnn_head = faster_rcnn_head self.roi2det = RoI2Det(rcnn_box_decoder) if weights is not None: if weights == "mmdet": weights = ( "mmdet://faster_rcnn/faster_rcnn_r50_fpn_1x_coco/" "faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth" ) if weights.startswith("mmdet://") or weights.startswith( "bdd100k://" ): load_model_checkpoint(self, weights, rev_keys=REV_KEYS) else: load_model_checkpoint(self, weights)
[docs] def forward( self, images: torch.Tensor, input_hw: list[tuple[int, int]], boxes2d: None | list[torch.Tensor] = None, boxes2d_classes: None | list[torch.Tensor] = None, original_hw: None | list[tuple[int, int]] = None, ) -> FRCNNOut | DetOut: """Forward pass. Args: images (torch.Tensor): Input images. input_hw (list[tuple[int, int]]): Input image resolutions. boxes2d (None | list[torch.Tensor], optional): Bounding box labels. Required for training. Defaults to None. boxes2d_classes (None | list[torch.Tensor], optional): Class labels. Required for training. Defaults to None. original_hw (None | list[tuple[int, int]], optional): Original image resolutions (before padding and resizing). Required for testing. Defaults to None. Returns: FRCNNOut | DetOut: Either raw model outputs (for training) or predicted outputs (for testing). """ if self.training: assert boxes2d is not None and boxes2d_classes is not None return self.forward_train( images, input_hw, boxes2d, boxes2d_classes ) assert original_hw is not None return self.forward_test(images, input_hw, original_hw)
[docs] def __call__( self, images: torch.Tensor, input_hw: list[tuple[int, int]], boxes2d: None | list[torch.Tensor] = None, boxes2d_classes: None | list[torch.Tensor] = None, original_hw: None | list[tuple[int, int]] = None, ) -> FRCNNOut | DetOut: """Type definition for call implementation.""" return self._call_impl( images, input_hw, boxes2d, boxes2d_classes, original_hw )
[docs] def forward_train( self, images: torch.Tensor, images_hw: list[tuple[int, int]], target_boxes: list[torch.Tensor], target_classes: list[torch.Tensor], ) -> FRCNNOut: """Forward training stage. Args: images (torch.Tensor): Input images. images_hw (list[tuple[int, int]]): Input image resolutions. target_boxes (list[torch.Tensor]): Bounding box labels. target_classes (list[torch.Tensor]): Class labels. Returns: FRCNNOut: Raw model outputs. """ features = self.fpn(self.basemodel(images)) return self.faster_rcnn_head( features, images_hw, target_boxes, target_classes )
[docs] def forward_test( self, images: torch.Tensor, images_hw: list[tuple[int, int]], original_hw: list[tuple[int, int]], ) -> DetOut: """Forward testing stage. Args: images (torch.Tensor): Input images. images_hw (list[tuple[int, int]]): Input image resolutions. original_hw (list[tuple[int, int]]): Original image resolutions (before padding and resizing). Returns: DetOut: Predicted outputs. """ features = self.fpn(self.basemodel(images)) outs = self.faster_rcnn_head(features, images_hw) boxes, scores, class_ids = self.roi2det( *outs.roi, outs.proposals.boxes, images_hw ) for i, boxs in enumerate(boxes): boxes[i] = scale_and_clip_boxes(boxs, original_hw[i], images_hw[i]) return DetOut(boxes, scores, class_ids)