Source code for vis4d.data.transforms.normalize

"""Normalize Transform."""

from __future__ import annotations

import torch

from vis4d.common.typing import NDArrayF32

from ..const import CommonKeys as K
from .base import Transform


[docs] @Transform(K.images, K.images) class NormalizeImages: """Normalize a list of image tensor with given mean and std. Image tensor is of shape [N, H, W, C] and range (0, 255). """ def __init__( self, mean: tuple[float, float, float] = (123.675, 116.28, 103.53), std: tuple[float, float, float] = (58.395, 57.12, 57.375), epsilon: float = 1e-08, ) -> None: """Creates an instance of NormalizeImage. Args: mean (Tuple[float, float, float], optional): Mean value. Defaults to (123.675, 116.28, 103.53). std (Tuple[float, float, float], optional): Standard deviation value. Defaults to (58.395, 57.12, 57.375). epsilon (float, optional): Epsilon for numerical stability of division. Defaults to 1e-08. """ self.mean = mean self.std = std self.epsilon = epsilon
[docs] def __call__(self, images: list[NDArrayF32]) -> list[NDArrayF32]: """Normalize image tensor.""" for i, image in enumerate(images): img = torch.from_numpy(image).permute(0, 3, 1, 2) pixel_mean = torch.tensor(self.mean).view(-1, 1, 1) pixel_std = torch.tensor(self.std).view(-1, 1, 1) img = (img - pixel_mean) / (pixel_std + self.epsilon) images[i] = img.permute(0, 2, 3, 1).numpy() return images